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TECHNIC& NOTE D-93 

APPLICATION TO FLUID DYNAMICS OF THE THEORY 

OF RmmSrnm HEAT ADDITION 

By Barrett S. Baldwin, Jr. 

SUMMARY 

A discussion is given of the approximations required to relate the 
equations of Hicks and Shapiro for gas flows with heat addition to the 
general relations for radiating, reacting gas flows given by Hirschfelder, 
Curtiss, and Bird. It is indicated that the theory of Hicks and Shapiro 
corresponds to reversible heat addition because of the absence of dissipa- 
tive terms in the momentum equations. When applied to combustion problems, 
the theory is applicable to air-breathing engines at speeds up to about 
half of satellite speed. 
underwing heat addition at hypersonic speeds, and the results of a series 
of exact calculations are given. The effects on aircraft range of 
several arrangements of external heat addition are presented. 

The theory of reversible heating is applied to 

Three types of flow which are of practical interest in aeronautics, 
but for which a relatively small number of solutions are available are 
(1) those associated with combustion problems, (2) flow of a gas not in 
equilibrium with respect to all degrees of freedom, and (3) flow of a gas 
under conditions such that the flow field is partially determined by 
radiation absorbed and emitted by the gas. 

In this work, a self-consistent theory of inviscid flow with reversi- 
ble heat addition has been selected for study. The applicability of this 
theory to the types of flow listed above will be discussed briefly. 
Methods for obtaining solutions will be described and several solutions 
applicable to the underwing heat addition problem will be given. 

It is observed in reference 1 that for combustion processes occurring 
in flowing fiel-air mixtures, effects owing to changes in chemical compo- 
sition are small compared with effects owing to changes in stagnation 
temperature. An excellent treatment of one-dimensional flows involving 
changes in stagnation temperature is given in reference 2. The basic 
equations for the corresponding two- and three-dimensional flows are 
given in references 3 and 4. 
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3 p - + grad p = 0 Dt 

D h _ E P = g v  
Dt 

P = P(SYP) 

The continuity and momentum equations are identical to the usual 
inviscid relations for adiabatic flow. If the heat addition were not 
assumed reversible, to be consistent it wo7dd bc cecessar; to add terns 
depending on a bulk viscosity parameter in the momentum equations. How- 
ever, we will assume reversible heating and w i l l  briefly investigate the 
applicability of this approximation to real flows. 

The energy equation is the usual relation for inviscid flow except 
for the addition of the term on the right, Qv, which is the distribution 

quantity Qv is replaced by pq in which g is the heat power per unit 
mass rather than per unit volume. 

. of heat addition per unit volume per unit time. In reference 4, the 

i 

In reference 5 a graphical method for solving the basic equations is 
In references 6 employed to analyze the underwing heat addition problem. 

combustion problems. The results of the linearized analyses indicate a 
need for a study of stronger heating effects than those for which the 

to 10 the basic relations are linearized and applied to aircraft external 4 

linear theory is valid. 0 

BASIC FLOW EQUACrIONS 

The basic equations of reference 4 are as follows: 

The continuity equation 

DP - + p div $ = 0 Dt 

The momentum equation 

The energy equation 

The equations of state 

3 p - + grad p = 0 Dt 

P = P(SYP) 

The continuity and momentum equations are identical to the usual 
inviscid relations for adiabatic flow. If the heat addition were not 
assumed reversible, to be consistent it wo7dd bc cecessar; to add terns 
depending on a bulk viscosity parameter in the momentum equations. How- 
ever, we will assume reversible heating and w i l l  briefly investigate the 
applicability of this approximation to real flows. 

( 3 )  

The energy equation is the usual relation for inviscid flow except 
for the addition of the term on the right, Qv, which is the distribution 

quantity Qv is replaced by pq in which g is the heat power per unit 
mass rather than per unit volume. 

. of heat addition per unit volume per unit time. In reference 4, the 
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The equations of state, not given explicitly here in order to preserve 
generality, will, be specified when needed. 

. 9  From these basic relations, it can be shown that in many cases the . 
flow is irrotational, and the flow field can be expressed in terms of a 
velocity potential. Techniques applied to inviscid flow problems, such 

4 as linearization, the method of characteristics, etc., can be applied to 
two- and three-dimensional flows with reversible heat addition. 

APPLICABILITY OF BASIC FLOW EQUATIONS 
TO REAL GAS FLOWS 

Y 

A very general set of fluid flow relations is given in reference 11, 
chapter 11. These equations apply to any continuum, radiating, reacting 
gas flow when the translational degrees of freedom are nearly in equilib- 
rium. Even turbulent flows and flows involving magnetohydrodynamic 
effects must be determined in part by the relations given there. 

Our continuity and momentum equations follow directly from the 

For a reacting gas mixture, the pressure appearing in these 
equations of reference 11 after the deletion of viscous and body force 
terms. 
equations is the total pressure exerted by the mixture, and p is the 
total density. However, it is expedient to use an approximation wherein 
the quantity p appearing in our equations is taken to be the partial 
pressure of the nitrogen and that fraction of the oxygen and products of 
combustion corresponding to the number of oxygen molecules present, free 
and combined. Similarly, the density p appearing in our equations is 
taken to be that part of the true density which is contributed by the 
air. These two approximations amount to neglecting the fuel mass flow 
and forces due to the fuel mass flow, the presence of the fuel being 
taken into account only in the energy equation. For combustion in rocket 
motors, the forces due to fuel mass flow cannot be neglected because they 
are the largest forces present. But in air-breathing combustion systems, 
these forces are minor at vehicle velocities up to about half of satellite 
velocity, depending on the fuel. 

O u r  energy equation can be related to equation (11.1-4) of reference 
12, which, with the deletion of terms associated with heat conduction, 
diffusion processes, viscous dissipation, and body forces, is the 
expres s ion 

div 7 div qR - - 3 De - 1 - _ - -  
Dt P P ( 5 )  

n 
where U is the internal energy per unit mass of the reacting mixture 
and q, is the energy flux vector due to radiation. + 
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The quantity div & is equal to (R - A) where R is the radiation 
energy emitted by the gas per unit volume per unit time and A is the 
corresponding absorption of radiant energy. Equation ( 5 )  can then be 
written 

In the actual process 
radiation ( a  particles, P 

of absorption of electromagnetic or nuclear 
particles, fission fragments, etc.), the gas 

b 

atoms are excited at levels of energy which are large compared to ordinary 
thermal energies. Strictly, the excited atoms should be treated as sepa- 
rate chemical species and rate constants found for the transitions to 
lower energies by collision and by radiation. However, if these rates 
are sufficiently fast or if the fraction of atoms excited is small, such 
details are unimportant and only the net absorption (A - R )  need be 
considered. 

Using the continuity equation and the identity 

h 

U + x = h + U + - - h  P P 

one can express equation (6) as 1 

- - -  Dh 1 D p - A - R - 2  i; - (h - E)] Dt P Dt P Dt 

This relation follows from the previous one for an arbitrary defini- 
tion of the quantity h. Several definitions are of interest. One such 
is to take h to be that part of the enthalpy which is in equilibrium 
so that 
quantity [U - (h - p/p)] is a part of the internal energy which is not a 
function of the temperature and pressure alone, but instead depends on the 
temperature and pressure history through reaction-rate relations given in 
references 11, 12, and elsewhere. 

hA is a function of the temperature and pressure. Then the 

For the sake of definiteness, h is here defined to be the same 
function of entropy and pressure as the enthalpy of air in equilibrium. 

Our energy equation follows from equation (7) by setting the right 
side of equation (7) equal to &v/p, that is, by imposing the relation Y 



5 

f 

In accord with the previous approximations regarding pressure and 
density, the quantity is the internal energy of,air at equilib- 
rium at the existing temperature and pressure. [e  -(h - p/p)] is the difference between the total internal energy of the 
reacting mixture and the internal energy of air at the existing temperature 
and pressure. 

h - p/p 
Thus the quantity 

As previously mentioned, our momentum equations are consistent with 
the assumption of reversible heat addition. This means that the contri- 
bution of the fuel to the entropy is neglected as well as its contribution 
to the pressure and density. In other words, the entropy is taken to be 
the same function of pressure and density as is the entropy of air in 
equilibrium. 

Equation (8) must ultimately be taken into account in a complete 

to be an 
theory of heat addition, but for the present we join earlier investiga- 
tors in seeking the consequences of taking the quantity 
independent variable. The resulting solutions may be useful as the first 
step in a more exact iterative solution of combustion problems, nonequi- 
librium flow problems, and flow problems in which radiative heat transfer 
is taken into account. 

Qv 

It should be emphasized that the theory of reversible heat addition 
defined by equations (1) to (4), although only approximately related to 
real gas flows, is a self-consistent theory which can be analyzed 
rigorously. 

FLOW WITH SPECIFIED THERMODYNAMIC PROCESS 

The present study was undertakento provide a basis for analysis of 
the underwing heat addition problem. 
can be specified at the outset. Numerical examples of the results for 
this case will be presented. However, we will first consider an alterna- 
tive procedure of specifying the thermodynamic process in the entire flow 
field and then solve for the required distribution of heat addition. It 
will be seen that this alternative leads to simplification because it is 
possible to solve for the pressure, density, and velocity fields independ- 
ently of the energy equation in this case. 

The distribution of heat addition 

If a thermodynamic process is specified, the pressure is a known 
function of density (i.e., the gas is barotropic) . 
is a perfect differential, which can be expressed by the relation 

In that case (l/p)dp 

- 1. dp = -d (w - ;) 
P ( 9 )  
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where w i s  t h e  work done per u n i t  mass by t h e  element of gas under 
consideration; dw i s  a per fec t  d i f f e r e n t i a l  only i f  a thermodynamic 
process i s  spec i f ied  as i s  here t h e  case. If dw i s  a per fec t  d i f f e r -  

nates  in  an i r r o t a t i o n a l  region and i s  continuous, whether steady o r  
unsteady . 
e n t i a l ,  it can be shown t h a t  t h e  flow remains i r r o t a t i o n a l  when it o r ig i -  + 

For i r r o t a t i o n a l  f l o w ,  t h e  momentum equations can be wr i t t en  i n  terms 
of a veloci ty  po ten t i a l  cp and in tegra ted  t o  obtain t h e  r e l a t i o n  

Use o f t h i s  r e l a t i o n  together  with t h e  cont inui ty  equation leads t o  t h e  
equation 

The quant i ty  dp/dp i s  a funct ion o f  ( w  - p/p) which i s  determined n 
by t h e  equations of s t a t e  and t h e  spec i f ied  thermodynamic process. 
follows from equation (10) t h a t  

It 
dp/dp i s  a known function of 

'P t  + (1/2) ((Px2 + cpy') b 

As an example, consider a thermodynamic process spec i f ied  by t h e  
r e l a t ion  for a polytropic  gas 

I , g  
P = (Li) 
PO 

I n  t h i s  case t h e  equations of s t a t e  a r e  not needed t o  a r r i v e  a t  t h e  
r e l a t ion  

(13) 

This d i f f e r e n t i a l  equation i s  i d e n t i c a l  t o  t h e  po ten t i a l  equation f o r  4 

i sen t ropic  f l o w  of an i d e a l  gas, except that t h e  r a t i o  of s p e c i f i c  hea ts  
i s  here replaced by t h e  constant g, which i s  not necessar i ly  a r a t i o  of  
spec i f ic  heats.  Y e t  no use has been made of e x p l i c i t  equations of state 
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No knowledge of conditions i n  t h e  
t r a n s i t i o n  region i s  required t o  
obtain t h e  shock-wave r e l a t ions .  

t h e  t r a n s i t i o n  can be achieved by 
reve r s ib l e  heating and cooling; 'I' ADDITION COOLING 

t h a t  i s  by heating i n  t h e  forward 

TRANSITION REGION 

However, it i s  in t e re s t ing  t h a t  -u, 
HEAT 

i n  t h e  der ivat ion.  
equilibrium. The energy equation, no t  previously used, can be used 
together  with t h e  equations of state t o  f ind  t h e  d i s t r i b u t i o n  of heat  
addi t ion  % required t o  produce t h e  flow. For an ideal gas, t h i s  
r e l a t ionsh ip  i s  given by t h e  expression 

Consequently t h i s  r e s u l t  appl ies  t o  any gas i n  

c 

- 4 2  

P2l p2 

Although gases i n  equilibrium cannot have values of t h e  r a t i o  of 
s p e c i f i c  heats  l e s s  than 1, nor greater  than 5 / 3 ,  f l o w s  corresponding t o  
values of g from minus i n f i n i t y  t o  plus i n f i n i t y  can be constructed, 
i f  it i s  possible  t o  supply t h e  required d i s t r i b u t i o n  of revers ib le  heat 
addi t ion  t o  t h e  flow without other e f fec ts .  

DISCONTINUITlES 

I' 

e 

We W i l l  now re tu rn  t o  t h e  solut ions of t h e  bas i c  equations with t h e  
d i s t r i b u t i o n  of  heat  addi t ion  specif ied a t  t h e  outset .  
d i s t r ibu t ions  of heat addi t ion lead  t o  r o t a t i o n a l  flows and are d i f f i c u l t  
t o  t r e a t  ana ly t ica l ly .  However, c lasses  of i r r o t a t i o n a l  ana ly t i ca l  solu- 
t i ons  can be  found which are applicable t o  t h e  underwing heat  addi t ion  
problem. 

Most a r b i t r a r y  
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P 2  
( 7  -1) + ( y  + 1) 22 

( 7  + 1) + (7 - 1) p1+ (7 - 1) - 
P1 

P2 2P 
- - _  

p 1  
PdP1 

where p is the total enthalpy increase across the discontinuity. For 

special case where the value of p is such that the Mach nuniber behind 
the discontinuity is equal to 1, the Chapman-Jouguet rule is satisfied, 
and the discontinuity is a detonation wave. In practice, other values 
of p can be achieved by combustion alongside of struts inserted into 
the transition region, or by combustion of fuels with high reaction rates 
at the ambient temperature. We assume that other dimensions are large 
compared with the thickness of the transition region in treating the 
transition as a discontinuity. When IJ- is not equal to zero, jumps from 
supersonic to any lower Mach number down to that corresponding to a shock 
wave and from subsonic to any higher subsonic Mach number are possible, 
without the necessity of heat transfer from cold to hot regions. 

present purposes, p is taken to be an independent variable. In the e 

Oblique and curved discontinuities with heat addition can be con- 
structed from the results for the normal case in analogy to such construc- 
tions f o r  shock waves. In general, curved discontinuities introduce 
rotation in the flow. 

The pressure jump is given by the relation 

where Mnl 
and M is the normal Mach number behind. The total enthalpy increase 
p is given in terms of initial conditions and normal Mach numbers by the 
relation 

is the incident Mach number normal to L e  discontinuity 

n? 

Equations (l5), (16), and (17) apply to normal or oblique discontinuities. 
Sketch (b) depicts a convenient set of angle coordinates for the oblique 
case. The following expressions relate these angles to the independent 
variables, M1, kl, and G2: 4 

G1 COS el = 
1 
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DISCONTINUITY- / 
/ \ 

NORM ALL, 

Sketch (b) 

UNDERWING HEXT ADDITION PROBUM 

An important appl ica t ion  o f  t h e  reversible  hea t  addi t ion theory i s  
i n  the  evaluation of underwing heat  addition or other  a i r c r a f t  ex te rna l  
combustion schemes. 
and elsewhere. 

This idea has been t r ea t ed  i n  references 5 t o  10, 
Sketch ( e )  i s  a sketch o f  a two-dimensional wing with heat  

\ -v m, \ 1 SLIP  SURFACE^ v \ HEATED REGION 

Sketch ( c )  

addi t ion i n  the  region below the  wing. 
t h e  flow i s  i r r o t a t i o n a l ,  and it i s  found t h a t  f o r  given heat ing there  
a r e  optimum values of wing thickness r a t i o  and angle of a t t ack .  Also, 
according t o  l i n e a r  theory, t he  amount o f  heat ing should be as l a rge  as 

In the  l i nea r i zed  approximation 
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possible or zero depending on the  f l i g h t  Mach number and engine character-  
i s t i c s .  It turns  out t h a t  the  i n t e r e s t i n g  values of heat  addi t ion a r e  
beyond the  range of v a l i d i t y  of t h e  l i n e a r  theory. 

In t h e  exact problem, the flow i s  ro ta t iona l ,  and numerical methods 
are required f o r  solution. 
heating under a f la t  p l a t e  have been obtained i n  reference 13. 
cases considered, the  results indicate  t h a t  t h e  l i n e a r  theory overest i -  
mates the  a i r c r a f t  performance obtainable from underwing heat addition. 
In reference 10, an extension of t h e  l i n e a r  theory is  used t o  show-that 
the  performance would be improved by disposing t h e  heat along forward- 
going c h a r a c t e r i s t i c s  under t h e  wing. 
d ic t ion  using exact solutions,  several  p o s s i b i l i t i e s  f o r  using t h e  
techniques previously discussed i n  t h i s  work are open. 

A s e r i e s  of exact numerical solut ions for 
I n  t h e  

In an attempt t o  v e r i f y  t h i s  pre- 

Sketch (d)  depicts  

-V 

Sketch (d)  

an a i r f o i l  shaped so as t o  maintain i r rotat ional .  flow i n  the  presence of 
heating. The heating i s  disposed along forward-going c h a r a c t e r i s t i c s  
under the  wing by means of an oblique detonation wave or other  type of 
oblique d iscont inui ty  with heating. The detonation m v e  i s  followed by 
a Prandtl-Meyer expansion, which can include f u r t h e r  heating, i f  a value 
of the polytropic  exponent g less than y i s  used. A t  the  lower end 
of the detonation wave, a s l i p  surface occurs between t h e  heated and 
unheated a i r .  Also a shock wave occurs below the  heated region because 
of the def lec t ion  of the  s l i p  surface with respect t o  t h e  f r e e  stream. 
~ V L L G L  IILIELII~ be t e r i x d  complete expansion i s  reached when t h e  lower s7;ir-face 
of  the a i r f o i l  becomes p a r a l l e l  t o  t h e  s l i p  surface.  If t h e  a i r f o i l  
lower surface i s  continued i n  a s t r a i g h t  l i n e  a f t e r  complete expansion, 
t h e  flow behind the  expansion w i l l  be uniform. 

T7L-C m--L^C 

All of the  r e s u l t s  t o  be presented i n  t h i s  work a re  special ized t o  
t h e  case o f  oblique detonation waves with no heating i n  t h e  Prandtl-Meyer 
expansion. 
forces on t h e  lower surface while ignoring t h e  pressure forces  on t h e  
upper surface and t h e  f r i c t i o n  drag. 

ALSO, f o r  present  purposes, we w i l l  concentrate on the  pressure 
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Before the results of the  computations a re  given, f u r t h e r  explanation 
For perfect combustion efficiency, an over-all  of t h e  notat ion i s  needed. 

engine e f f ic iency  can be wr i t ten  as the dimensionless r a t i o  
i s  t h e  heat  power i n  u n i t s  of foot-pounds per  second, T is  t h e  t h r u s t  i n  
pounds, and V i s  the  vehicle  veloci ty  i n  f e e t  per  second. Since t h r u s t  
can be developed by combustion under a wing, the  r a t i o  TV/Q f o r  t h e  wing 
i s  of i n t e r e s t  f o r  a determination of the accelerat ion e f f ic iency  of the  
wing. A s i m i l a r  r a t i o ,  LV/Q, takes the place of L/D i n  t h e  range equa- 
t i o n .  For a conventional a i r c r a f t ,  the range i s  proportional t o  the  pro- 
duct of L/D times the  engine eff ic iency TV/Q. Since the  t h r u s t  i s  
equal t o  t h e  drag i n  steady f l i g h t ,  t h i s  product becomes 

TV/Q, where Q 
r; 

a 

LV/Q. 

In f igure  1 p l o t s  are presented of the  quant i ty  LV/Q versus t h e  
power coef f ic ien t  CQ f o r  f l i g h t  Mach numbers from 5 t o  10. "he quan- 
t i t y  CQ i s  a measure of t h e  t h r o t t l e  s e t t i n g  or,  more precisely,  it i s  
t h e  dimensionless r a t i o  &/(1/2)p?CV. Also shown i s  the  l i f t  coef f ic ien t  
r e s u l t i n g  from t h e  pressure coeff ic ient  on t h e  lower surface.  The pre- 
d i c t i o n  of  reference 10 t h a t  values of 
l inear- theory value can be achieved i s  v e r i f i e d  f o r  small values of the  
power coef f ic ien t .  
of t h e  power coef f ic ien t  i n  the  cases considered, t h e  l i n e a r  theory over- 
estimates the performance, i n  agreement with t h e  findings of reference 13. 
S t r i c t l y ,  the r a t i o  LV/Q should be evaluated at zero t o t a l  drag. How- 
ever, t o  avoid specifying the  a i r f o i l  upper surface and the  f r i c t i o n  drag, 

drag on t h e  lower surface.  Hence there remains a ne t  drag of t h e  same 
order as t h e  f r i c t i o n  drag. 
t h e  l i f t  coef f ic ien t  i s  l a r g e  compared t o  about s ix  times t h e  f r i c t i o n  
drag coef f ic ien t .  Consequently, the r e s u l t s  i n  f igure  1 f o r  l i f t  coef- 
f i c i e n t s  l e s s  than about 0.05 a r e  not of p r a c t i c a l  significance.  The 
results f o r  Mach numbers 5 and 7 require heat  addi t ion less than t h a t  
corresponding t o  t h e  stoichiometric r a t i o  f o r  gasoline.  In  the  Mach 
number 10 p lo t ,  t h e  power coef f ic ien t  corresponding t o  the  stoichiometric 
r a t i o  i s  noted. 

LV/Q g r e a t e r  than t h e  f l a t - p l a t e  

However, it w i l l  be seen t h a t  f o r  p r a c t i c a l  values 

0 t h e  values of LV/Q i n  f igure  1 have been computed f o r  zero pressure 

This w i l l  have a minor e f f e c t  on range when 

For the r e s u l t s  shown i n  f igure  1, t h e  Prandtl-Meyer expansion was 
extended as far as possible  and a s t ra ight  sect ion of a i r f o i l  w a s  added 
after t h a t  i n  order t o  develop t h e  maximum l i f t  consis tent  with zero 
pressure drag on t h e  lower surface.  I f  the  a i r f o i l  i s  cut off a t  the  
point  where t h e  lower surface becomes horizontal ,  t h e  t h r u s t  i s  a maxi- 
mum. In f igure  2 p l o t s  a r e  presented of TV/Q versus power coef f ic ien t  
under t h i s  condition. The t h r u s t  coeff ic ient  and l i f t  coef f ic ien t  
r e s u l t i n g  from t h e  pressure coeff ic ient  on t h e  lower surface are also 
shown. 
achieved by means of combustion under a wing compared with values of 0.3 
o r  higher f o r  conventional ran jets.  However, r a t h e r  l a r g e  l i f t  c o e f f i -  
c i e n t s  occur as a by-product of the underwing combustion. 

It can be noted t h a t  engine e f f ic ienc ies  of 0.10 t o  0.12 can be 
A 



CONCLUSIONS 

Methods have been described for obtaining exact solutions (within i 

the framework of the theory of reversible heat addition) applicable to 
the evaluation of aircraft external combustion schemes. 
solutions have been applied to the underwing heat addition problem. The 
results show that the type of external combustion considered may not be 
advantageous in the Mach number range from 5 to 10, if conventional ram- 
jet engine efficiencies greater than 1/3 can be achieved. However, cer- 
tain problems connected with radiant heat transfer and variable geometry 
may be lessened in the case of external combustion. 
must be accepted, the results given should be useful for estimating the 
performance to be expected from underwing heat-addition schemes. 

Several such 

If lower efficiencies 

SYMBOLS 

A 

C 

CL 

CQ 

CT 

D 

D 
Dt 

g 

h 

L 

M 

Mn.2 

P 

radiation energy absorbed per unit volume per unit time 

airfoil chord measured from detonation wave 
T L lift coefficient, 

(1/2) PPC 

power coefficient, Q 
(1/2 ) pv'cv 

thrust coefficient, T 
1 PV2C 

drag 

a + +  substantial derivative, - + v - V  
at 

polytropic exponent 

enthalpy of air per unit mass 

lift 

free-stream Mach number 

Mach number normal to discontinuity on upstream side 

Mach number normal to discontinuity on downstream side 

pressure 

c 

*. 
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. 
a 

d i s t r i b u t i o n  of hea t  addition per  u n i t  mass per  u n i t  t i m e  

t o t a l  heat  energy addi t ion  per u n i t  time (same un i t s  as 

d i s t r i b u t i o n  of heat  addition per u n i t  volume per  u n i t  time 

energy rad ia ted  per  un i t  volume per  u n i t  t i m e  

LV) 

- time 

t h r u s t  

i n t e r n a l  energy pe r  un i t  mass 

ve loc i ty  

work done per  un i t  mass 

Cartesian coordinates 

r a t i o  of spec i f i c  hea ts  

engine e f f ic iency  

angle between incident  stream and normal t o  d i scont inui ty  

angle between normal and stream behind d iscont inui ty  

t o t a l  enthalpy increase across d i scon t inu i type r  u n i t  mass 

densi ty  

ve loc i ty  po ten t i a l  

ve loc i ty  components 

Subscript s 

0 reference value 

1 conditions ahead of discont inui ty  

2 conditions behind discont inui ty  

n normal component 

x y y y t  par t ia l .  der iva t ive  w i t h  respect t o  subscr ipt  
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Figure 1.- Range eff ic iency for  underwing heat addition. 



16 

6 5.04 
E l -  
I Q  
I - 5  

1.02  

a 

W 
V 
V 

c 

LIFT 
COEFFICIENT 

CL 

0 .2 .4 .6 
POWER COEFFICIENT C Q = Q / + ~ V ~ C V  

M=IO M = 7  

LIFT 
COEFFICIENT 

CL 

LIFT 
.2 COEFFICIENT 

CL i/ STO I CH. 
. GAS 

.2 .4 .6 
0 

POWER COEFFICIENT c ~ = Q / p p V ~ c V  I POWER COEFFICIENT c Q = Q / $ ~ v ~ C V  

Figure 2.- Engine eff ic iency f o r  combustion under a i r f o i l .  


